DNA substrate specificity and cleavage kinetics of an archaeal homing-type endonuclease from Pyrobaculum organotrophum.

نویسندگان

  • J Lykke-Andersen
  • H P Thi-Ngoc
  • R A Garrett
چکیده

The protein encoded by intron 1 of the single 23S rRNA gene of the archaeal hyperthermophile Pyrobaculum organotrophum was isolated and shown to constitute a homing-type DNA endonuclease, I-PorI. It cleaves the intron- 23S rDNA of the closely related organism Pyrobaculum islandicum near the site of intron insertion in Pb.organotrophum. In contrast, no endonuclease activity was detected for the protein product of intron 2 of the same gene of Pb.organotrophum which, like I-PorI, carries the LAGLI-DADG motif, common to group I intron-encoded homing enzymes. I-PorI cleaves optimally at 80 degrees C, with kcat and Km values of about 2 min-1 and 4 nM, respectively, and generates four nucleotide 3'-overhangs and 5'-phosphates. It can cleave a 25 base pair DNA fragment encompassing the intron insertion site. A mutation-selection study established the base pair specificity of the endonuclease within a 17 bp region, from positions -6 to +11 with respect to the intron-insertion site. Four of the essential base pairs encode the sequence involved in the intron-exon interaction in the pre-rRNA that is required for recognition by the RNA splicing enzymes. Properties of the enzyme are compared and contrasted with those of eucaryotic homing endonucleases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profile of the DNA recognition site of the archaeal homing endonuclease I-DmoI.

I- Dmo I is a homing enzyme of the LAGLI-DADG type that recognizes up to 20 bp of DNA and is encoded by an archaeal intron of the hyperthermophilic archaeon Desulfurococcus mobilis . A combined mutational and DNA footprinting approach was employed to investigate the specificity of the I- Dmo I-substrate interaction. The results indicate that the enzyme binds primarily to short base paired regio...

متن کامل

Directed evolution and substrate specificity profile of homing endonuclease I-SceI.

The laboratory evolution of enzymes with tailor-made DNA cleavage specificities would represent new tools for manipulating genomes and may enhance our understanding of sequence-specific DNA recognition by nucleases. Below we describe the development and successful application of an efficient in vivo positive and negative selection system that applies evolutionary pressure either to favor the cl...

متن کامل

Massively parallel determination and modeling of endonuclease substrate specificity

We describe the identification and characterization of novel homing endonucleases using genome database mining to identify putative target sites, followed by high throughput activity screening in a bacterial selection system. We characterized the substrate specificity and kinetics of these endonucleases by monitoring DNA cleavage events with deep sequencing. The endonuclease specificities revea...

متن کامل

Chemical mechanism of DNA cleavage by the homing endonuclease I-PpoI.

Homing endonucleases are distinguished by their ability to catalyze the cleavage of double-stranded DNA with extremely high specificity. I-PpoI endonuclease, a homing endonuclease from the slime mold Physarum polycephalum, is a small enzyme (2 x 20 kDa) of known three-dimensional structure that catalyzes the cleavage of a long target DNA sequence (15 base pairs). Here, a detailed chemical mecha...

متن کامل

Directed evolution of homing endonuclease I-SceI with altered sequence specificity.

Homing endonucleases recognize specific long DNA sequences and catalyze double-stranded breaks that significantly stimulate homologous recombination, representing an attractive tool for genome targeting and editing. We previously described a two-plasmid selection system that couples enzymatic DNA cleavage with the survival of host cells, and enables directed evolution of homing endonucleases wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 22 22  شماره 

صفحات  -

تاریخ انتشار 1994